
On the Difference between TFR and Parity Progression Measure of Fertility

Toru Suzuki

Introduction
This brief note compares the TFR (Total Fertility
Rate) and PAP (Period Average Parity), the latter a
life table measure of parity progression process.
While the TFR is based on so called "incidence
rates," the PAP refers to hazard or "intensity of
birth" which is theoretically more favorable.  The
difference between the TFR and PAP can be
regarded as "parity distribution effect" without
considering tempo distortion (Ortega and Kohler,
2002, pp. 17-18).  It is considered that the PAP is
based on a rate that is theoretically more favorable
but also is more robust to tempo effects (Bongaarts
and Feeney, 1998, p. 274).  In analytically
examining the characteristics of PAP in comparison
with TFR, it is assumed that the number of births
has specific distributions such as Poisson,
exponential, and geometric distributions.  In a stable
state wherein  all cohorts have the exactly same
fertility schedule, no difference between the TFR
and PAP appears.  To introduce perturbation, two
scenarios are considered.  One is a one-time age-
neutral quantum decline, and the other is a one-
time age-shift without any change in quantum or
shape.

1. Two Kinds of Fertility Rates
The denominator of the ordinary age-specific
fertility rate is entire whole female population of a
specific age group.  This rate is referred to as the
"incidence rate" (Ortega and Kohler, 2002, pp. 4-
5).  Even when the birth order is considered, no
structuring of the female population other than age
is introduced.  Since the denominator is common
for birth order-specific fertility rates by age, the
rates are additive.  The TFR can be defined as the
age total of the incidence rates without considering
birth order as well as the sum of the total order

specific rates.  If f(x,i) is the incidence rate of
mother's age x and birth order i, and [ α , β）is
the reproductive period,
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To obtain the theoretically favorable hazard or
"intensity of birth", considering the population at
risk, the denominator should be the age-parity
specific female population.  Since a woman's first
childbirth occurs at parity 0, the number of births
of birth order i+1 is divided by the female population
of parity i.  If p(x,i) is the parity distribution of
women of age x,
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The relation between the incidence rate and
the intensity of birth, m(x,i), is,

   f(x,i) = m(x,i) p(x,i).

It is obvious that all women at the beginning
of their reproductive period are classified as parity
0.  Namely, p( α ,0)=1 and p( α ,i)=0 for i>0.  A
multi-state life table can be produced, based on the
following system.
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Abstract
  This brief note analytically examines so called "parity distribution effect," namely the difference between
the TFR and PAP (Period Average Parity), the latter a life table measure of fertility.  It is shown that the
difference never appears in a Poisson process, which stems from the assumption that the intensity of
birth is independent from parity.  Analyses assuming exponential or geometric distribution of parity show
that the PAP is more robust and less likely to exaggerate fertility decline than the TFR.  The smaller
difference in Japan than in the Republic of Korea could be attributed to slower delay in childbearing and
a higher proportion of childless women in Japan, in addition to possible measurement error due to the
lack of fertility data in the Japanese census.
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In practice, adequate linear or exponential
interpolation should be applied.  The PAP is
calculated from the eventual parity distribution at
the end of the reproductive period.
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Rallu and Toulemon (1993) referred to this
measure as PATFR (Parity and Age Total Fertility
Rate).  The TFRPPR (TFR based on Parity
Progression Ratio) by Feeney (1986) is also a closely
related measure.

2. Introducing Perturbation
In a stable state in which all cohorts have the exactly
same fertility schedule, there is no difference
between TFR and PAP.  To examine the difference,
two scenarios of perturbation are hereby introduced.
One is a universal decline in intensity of birth.
Assume that while older cohorts have the fertility
schedule m(x,i), younger cohorts follows the
schedule of c m(x,i), where 0<c<1.  This expresses
a decline in the quantum of fertility without a tempo
change.  If X is the age of the transitional cohort,
the age pattern of intensity changes as X moves
from α to β as shown in Figure 1.  The TFR and
PAP can be seen as the function of X and are
denoted TFR(X) and PAP(X), respectively.  The
change starts when the transitional cohort begins
childbearing (X= α ) and ends when the cohort
finishes reproduction (X= β ).

Another scenario is an age-shift of intensity
without any change in quantum or shape.  Assume
that while older cohorts have the fertility schedule
m(x,i), younger cohorts follows the schedule of
m(x-h,i), where 0<h.  This expresses a delay in
the tempo of fertility without any change in
quantum or shape.  The age pattern of intensity
changes with the aging of the transitional cohort,

as shown in Figure 2.  As in these figures, it is
assumed that intensity of birth has a unimodal age
pattern.  It is also assumed that the upper limit of
reproduction does not change from β .  This
implies that, even in the age-shift of intensity, the
eventual TFR and PAP are less than the original
ones because fer ti l i ty around the end of
reproduction is lost.

3. Poisson Distribution
Here we assume that the intensity of birth is
independent from parity.  Namely, the intensity is a
univariate function of age and can be written as
m(x).  If M(x) is the cumulative intensity,
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Under this condition, parity has the Poisson
dis t r ib u t ion  wi t h  t he  pa r a me t er  M ( x )
(Krishnamoothy, 1979).
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Since intensity is independent from parity, it
turns out that the ordinary incidence rate without
considering parity is equivalent to the intensity.
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This implies that the TFR is equivalent to the
sum of intensity for all ages.  The PAP is defined
as the average parity at the end of the reproductive
period.  Thus, as far as the eventual parity has the
Poisson distribution which parameter is the TFR,
there is no difference between the TFR and PAP.

Figure 1. Age-Neutral Quantum Decline Figure 2. Delay in Intensity
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Because neither scenario considered here affects
the assumption of the independence of intensity
with parity, the parity distribution of a hypothetical
cohort always has the Poisson distribution with
the param eter M(x).  Therefore, there is no parity
distribution effect in a Poisson process.

4. Exponential Distribution
For the sake of simplicity, this section concentrates
on first births.  Therefore, the TFR represents the
average number of first children and the PAP the
proportion of women who have ever given birth.
For the sake of convenience, the intensity of first
birth is written as m0(x) and its cumulative as M0(x).
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The proportion of women who have never
given birth, p(x,0), is written as S0(x).

  .)0,()( )(
0

0 xMexpxS �  

This form can be seen as an expansion of basic
exponential distribution with a constant intensity,
as in the case of the Poisson distribution.  Since
the incidence rate is the product of the intensity
and parity,

   f0(x) = m0(x) S0(x).

4-1. Age-Neutral Quantum Decline
Here we assume that there was a one-time change
in intensity from m0(x) to c m0(x), where 0<c<1.
Since the cumulative hazard is also multiplied by c,
the proportion of women who have never given
birth will be powered by c for cohorts younger
than the transitional cohort.
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The TFR when the transitional cohort is at
age X is the original TFR minus the change in the
proportion of non-mothers at age X.

  TFR(X) = 1 – S0(β)

              – {S0(X) c – S0(X)}.

For the PAP, the ratio of proportion of childless
women, rather than the difference, is the matter of
consequence.

  .
)(
)(

)(1)(
0

0
0 XS

XS
SXPAP

c

E� 

It can be shown that the PAP declines
monotonously as the transitional cohort ages.
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On the other hand, the TFR can have an
extreme value within the reproductive period to
produce a U-shaped trajectory.
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The above equation implies that TFR(X) hits
the bottom when the old and new incidence rates
of first births are equivalent.  If X* is the age
corresponds to the bottom of trajectory,
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This produces the following solution.
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Since the right hand side is greater than one,
TFR(X) does not have an extreme value within the
reproductive period if M0( β ) ≦ 1.  In such a
case, TFR(X) will decline monotonously.  For the
TFR to produce a U-shaped trajectory, the
cumulative hazard must exceed the unity before
the reproduction ends.  This implies that the
proportion of childless women should be smaller
than exp(-1) which is approximately 36.8 per cent.
This is a weak requirement and the TFR will almost
always produce a U-shaped trajectory except in
case of very low fertility.

It is obvious that PAP( α ) = TFR( α ) and
PAP( β ) = TFR( β ).  If the PAP declines
monotonously and the TFR follows a U-shaped
trajectory with only one extreme value, it is
expected that the PAP is greater or equal to the
TFR throughout the change.

4-2. Age-Shift of the Intensity
Here we assume that the intensity of birth for

cohorts younger than the transitional cohort has
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shifted, such that m0(x) → m0(x-h) where h>0.
Since the cumulative hazard also shifts by h, the
proportion of childless women shifts by h.
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The TFR and PAP have the same form as in
the case of quantum decline but S0(X)c is replaced
by S0(X-h).

  TFR(X) = 1 - S0(β)
          - {S0(X-h) - S0(X)}.
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The following result shows that PAP(X)
produces a U-shaped trajectory because the first
parenthesis shifts from negative to positive under
the assumption of the unimodal age pattern of
m0(x).
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It turns out that the derivative of TFR(X) is
simply the difference between incidence rates.
Thus, the TFR also produces a U-shaped trajectory.
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It can be shown that the TFR is smaller than
the PAP.  In the following result, the equation on
the right hand side is a quadratic equation of S0(X)
whose roots are S0(X-h) and S0( β ).  Because
S0(X) is between S0(X-h) and S0( β ), the right
hand side should be always non-negative.  This
implies that PAP(X) ≧ TFR(X).

  S0(X) {PAP(X) - TFR(X)} = -S0(X)2
             + {S0( β )+S0(X-h)}S0(X)
             - S0( β ) S0(X-h).

5. Geometric Distribution
Two important results were obtained in the analysis
of first births in the former section.  Firstly, the
TFR can produce a U-shaped trajectory even in
the case of age-neutral quantum decline.  Secondly,
the TFR is smaller than the PAP throughout the
change.  These results could be sustained in a more
general setting of multiple bir ths if some
assumptions were made on parity distribution.  To
illustrate an example, it is assumed here that parity

has the geometric distribution at all ages.  Although
the reality of this assumption is questionable, this
will produce the simplest solution.

As in the branching process (Harris, 1989, p.
9), it is assumed that the proportion of childlessness
is given exogeneously.  If R(x) is the parity
progression ratio at age x and for i >0,
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Recall that the mean of geometric distribution
is 1/{1-R(x)}.  To simulate low fertility in
contemporary Japan, it is desirable that the
conditional mean for women who ever had birth,
1/{1-R(x)}, declines monotonously within the
range between one and two.  Here we choose the
following form.
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Then, parity has the following distribution at
age x.
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As in the previous section, it is assumed that
S0(x) = p(x,0) is determined by the intensity m0(x)
and its cumulative function M0(x).  The general
system of parity progression is,
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Applying the assumption of geometric

distribution yields the following solution.
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In a stable state,

  TFR= PAP= {1 - S0( β )} {2 - S0( β )}
            = S0( β ) 2 - 3 S0( β ) + 2.
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5-1. Age-Neutral Quantum Decline
Here it is assumed, as in Section 4-1, that there
has been change from m0(x) to c m0(x), where
0<c<1.  For cohorts at age X and below, the
proportion of childlessness is S0(X)c.  The new
incidence rate for all parities is,
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The difference in S0(X) and its square causes
the TFR change in an additional way.  On the other
hand, each argument of the original PAP is
multiplied with the ratio of S0(X) and its square.

  TFR(X) = S0( β ) 2 - 3 S0( β ) + 2
              - {S0(X) 2 - S0(X) 2c}
              + 3{S0(X) - S0(X) c}.
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As in Section 4-1,  the PAP declines
monotonously.
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The TFR hits the bottom when the old and
new incidence rates are equivalent.
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As in Section 4-1,  the TFR declines
monotonously if fertility is extremely low.  The
condition f2(X*) = f(X*) is equivalent with the
following equation of S0(X*).
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One asymptotic line is S0(X*) = c1/(1-c) which
makes the denominator zero.  Within the range c1/

(1-c) ＜ S0(X*) ≦ 1, the maximum of the equation
on the left hand side represents the unity when
S0(X*) = 1.  Thus, the condition f2(X*) = f(X*) is
satisfied only when S0(X*) < c1/(1-c).  If fertility is
low enough so that c1/(1-c) < S0( β ), there is no

such X* that satisfies f2(X*) = f(X*).
The value of c1/(1-c) is 0.3487 when c = 0.9 and

0.3277 when c = 0.8.  Except for a very drastic
change or very low fertility, there exists X*
corresponding to the extreme value.  Thus, we can
expect that the TFR produces a U-shaped trajectory
and is lower than the PAP throughout the change.

5-2. Age-Shift of the Intensity
If there were an age-shift of the sort wherein m0(x)
→ m0(x-h), the proportion of childlessness would
also shift from S0(x) to S0(x-h).  Thus, the incidence
rate would also shift in the same way.

  f2(x) = f(x-h)

The TFR and PAP would have the same form
as in the quantum decline but S0(X)c would be
replaced by S0(X-h).

  TFR(X) = S0(β) 2 - 3 S0(β) + 2
                   - {S0(X) 2 - S0(X-h) 2}
                   + 3{S0(X) - S0(X-h)}.
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The PAP will produce a U-shaped trajectory
in accordance with the difference between m0(X)
and m0(X-h).  Assume that S0( β ) < 1/2.  In the
following equation, the last parenthesis is positive
only if S0(x-h) is more than three times as large as
S0(x).  Such a drastic delay is not assumed here
and the PAP does not produce a reversed U-shaped
curve.
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As in Section 4-2, the derivative of TFR(X) is
simply the difference between the old and new
incidence rates at age X.  This implies that the TFR
also shows a U-shaped trajectory.
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Here we assume that S0(X) / S0(X-h) < 2 and
S0( β ) < 1/2.  In the last big parenthesis of the
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following equation, 1 + S0(X) / S0(X-h) is less than
3 and S0(X) + S0( β ) is less than 3/2.  Thus, the
PAP is larger than the TFR except for a lengthy
delay or extremely low fertility.
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6. Numerical Example
The analytical results so far illustrate that the TFR
tends to produce a U-shaped trajectory even in a
case of age-neutral quantum decline.  This implies
that the TFR tends to exaggerate the fertility decline.
Unfortunately, both TFR and PAP produce U-
shaped curves in a case of delay in childbearing.
However, the PAP is more robust and the degree
of exaggeration thereof is smaller than that of the
TFR.

Table 1 compares the TFR and PAP in Japan
and the Republic Korea in 2000.  The parity
distribution in Korea was obtained from the 2000
census.  Because the Japanese census lacks
information on fertility, the cohort specific parity
distribution in the year 2000 was estimated based
on a series of incidence rates of each cohort.  As
expected, the PAP in Korea showed higher value
than the TFR.  In Japan, however, the PAP was
slightly lower than the TFR.

Table 1. PAP and TFR in Japan and Korea
Eventual Japan KoreaParity (2000) (2000)Distribution

0 0.2958 0.1555
1 0.2077 0.2460
2 0.3685 0.5055
3 0.1073 0.0851

4+ 0.0208 0.0078
PAP 1.35 1.54

TFR 1.36 1.47

If there were any measurement errors, the
result on Japan would be more problematic because
the parity distribution was estimated indirectly.
However, there are some reasons to believe that
the difference between the TFR and PAP should

be smaller in Japan than in Korea.
One reason is Japan's slow delay in

childbearing.  The average age at childbearing rose
from 29.0 in 1990 to 29.7 in 2000.  In the same
period, however, the average age rose from 27.2
to 28.9 in Korea.  In fact, the tempo change in
Japan is among the slowest in countries suffering
from very low fertility.  Many European countries
with low fertility experienced a delay of one year
over a period of six years or less (Suzuki, 2003, p.
4).  It is apparent that the slower the delay, the
smaller the parity distribution effect.

Another reason is the high proportion of
eventual childlessness, S0(β ), in Japan.  As Table
1 reveals, the proportion was 29.6% in Japan in
2000.  This is not the extremely low level of fertility
that can cause a monotonous decline of the TFR
in the case of quantum decline, a reversed U-shaped
tra jectory of the PAP in postponement of
childbearing, or a higher value of the PAP than the
TFR.  However, it can be shown that the higher
the proportion of childless women, the smaller the
parity distribution effect.  Figure 3 shows an
example when S0(X) is at the midpoint of its change
in the scenario of age-neutral quantum decline.

Conclusion
This paper has compared the TFR and PAP in terms
of their responses to one time quantum or tempo
change.  It has been shown here that the TFR tends
to exaggerate fertility decline and to show lower
value than the PAP.  It is also shown herein that the
slow change in tempo and high proportion of
childlessness could explain the small difference
between the TFR and PAP in Japan.  The numerical
example employed was for the year 2000, preceding
a drastic fertility decline in Korea.  It will be
interesting to see if the difference in Korea in 2005

Figure 3. The Difference between TFR and PAP
by S0( β )and c in Quantum Decline

 S0( β )

     

    

  
  

0 0.1 0.2 0.3 0.4 0.5

0.15

0.10

0.05

0.00

PA
P(

X)
 - 

TF
R 

(X
)

c = 0.8
c = 0.9

c = 0.95

The Japanese Journal of Population, Vol.5, No.1 (March 2007)

17



decreased, as would be expected from the results
of this paper.
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