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Abstract 
Forecasting welfare caseloads has become more important than ever in Japan. One 
reason is the magnitude of the recent increase in its welfare caseloads. Given that most 
previous studies only concern US cases and have not exploited recent developments in 
the literature, this study employs several methods (exponential smoothing, ARIMA, 
LSTAR, VAR, and a set of forecast combinations) to forecast Japanese welfare 
caseloads and compare their performances. While a VAR model and a 
forecast-combination model tend to outperform the other methods in pseudo real-time 
forecasting, a simple average forecast-combination method appears to outperform the 
other methods in real-time forecasting. In particular, the method predicts that PA 
caseload in Japan would surpass 1.7 million by the beginning of 2016, an approximately 
20% increase from that at the beginning of 2011. 
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1. Introduction 

Forecasting welfare caseloads has become more important than ever in Japan. 

One reason is the magnitude of the recent increase in Public Assistance (PA) caseload in 

the country.
1
 Figure 1 shows the total monthly PA caseload volume between 2001 M01 

and 2011 M02, and Figure 2 exhibits their growth rate, along with the monthly entries 

and exits. PA caseloads have been growing since the early 1990s. In particular, its 

growth accelerated after 2008, reaching the current record high of 1.5 million. While the 

caseload levels have been as low as approximately 750,000 at the beginning of this 

century, the decade that followed saw this number double. Rapidly increasing caseloads 

may cause logistical problems for eligibility assessments and service delivery 

operations by welfare agencies. Equally importantly, it could entail financial problems 

in the appropriations process at different levels of the government. In Japan, local 

governments implement PA programs according to nationally uniform rules, described 

as follows.
2
 First, the recent trend in PA caseloads has increased the share of PA 

expenditure in local expenditures. In some urban municipalities, PA expenditure has 

now amounted to as high as 20% of their total expenditures. Second, since the central 

government fiscally supports local PA programs through both categorically matching 

subsidies as well as general grants, the rapid increase also affects the central budgeting 

process.
3
 Especially given the ongoing pressure to reduce public spending and the 

                                                 
1
 This paper uses “social assistance” as a generic term for needs-based and tax-financed programs that 

aim to maintain the minimum costs of living of their recipients. On the other hand, “Public Assistance 

(PA)” here refers to a specific social assistance scheme in Japan. The Japanese PA covers all types of 

households including the elderly, single mothers, disadvantaged, and injured/sick who are considered 

unable to earn, through their own best efforts, incomes above the basic costs of living. PA thus aims to 

guarantee that all citizens maintain their basic costs of living. As PA benefits supplement what individuals 

cannot earn, caseworkers conduct means tests to assess the eligibility of applicants. 
2
 The Japanese local system consists of two levels of government, with municipalities (cities, towns, and 

villages) as the first tier and prefectures as the second tier. Cities implement PA programs through their 

welfare offices. While a small number of towns and villages set up their own welfare offices to implement 

PA, they are not required to set up such offices. Prefectural welfare offices cover residents in towns and 

villages that do not have their own welfare offices. 
3
 The Central Government Subsidy (CGS) matches PA benefits at 75%, and the Local Allocation Tax (a 

general-purpose grant) accounts for the costs of the PA programs not covered by the CGS (the remaining 



2 

 

current trends of offloading responsibilities from the central government to localities in 

Japan, the accurate forecasting of PA caseloads should thus help the budgeting process 

both at the central and local levels. 

Figures 1 and 2 

The literature on welfare caseload has two strands. The first stand has extensively 

explored the determinants of welfare caseloads in the US. While most of these studies 

have examined the effects of economic factors such as unemployment (e.g., Blank 

2001; Ziliak et al. 2001), many have also explored the effects of institutional schemes, 

which includes such determinants as state demonstration programs (Schiller and 

Brasher 1993; Johnson et al. 1994), waivers from Aid to Families with Dependent 

Children (AFDC; Schiller 1999), and the introduction of the Temporary Assistance for 

Needy Families (TANF; Moffit 2003). Meanwhile, other studies have examined other 

factors such as benefits levels (Shah and Smith 1995), local labor markets (Hill and 

Murray 2008), and minimum wages (Page et al. 2005). There are also analogous studies 

for other countries such as Canada (Spindler and Gilbreath 1979), Sweden (Gustafsson 

1984), Spain (Ayala and Pérez 2005), and Japan (Suzuki and Zhou 2007). 

The second strand of studies has attempted to forecast welfare caseloads to inform 

policy makers in budgeting and operation (Plotnick and Lidman 1987; Albert and Barth 

1996; Opitz and Nelson 1996; Conte et al. 1998; Grogger 2007; Gurmu and Smith 

2008; Lazariu et al. 2010), to which the current study belongs. However, this strand has 

two shortcomings. First, it has only focused on US cases. Since forecasting welfare 

caseloads is also an integral part of the oversight of social assistance programs in other 

countries, studies for these other countries should contribute to the literature. Second, it 

has not exhausted the recent developments in forecasting methods. While there have 

been extensive studies on the comparative forecasting performance of different methods 

                                                                                                                                               
25% of PA benefits plus the costs of welfare personnel and welfare office maintenance). 
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in other variables such as unemployment and inflation, there have not been analogous 

studies on welfare caseloads with the exception of Lazariu et al. (2010), who only 

considered ARIMA and VAR models. Forecasting caseloads with the other methods 

should thus contribute to the prediction of future levels of welfare caseloads. 

This study aims to improve on these previous studies by applying a variety of 

forecasting methods to the PA caseloads in Japan. The caseloads in the sample have a 

monthly frequency and include the period 2001 M01 to 2011 M02, which are then split 

into a regression sample (2001 M01 to 2010 M02) and a validation sample (2010 M03 

to 2011 M02). In this study, I apply several methods as if I were actually forecasting 

using the regression sample, the results of which are then compared to that using the 

validation sample. I anticipate that while a VAR model and a forecast-combination 

method will tend to outperform other methods in pseudo real-time forecasting, a simple 

average forecast combination will perform well in real-time forecasting. The method 

predicts that PA caseloads would reach at least 1.7 million by the end of 2015, a more 

than 20% increase from 2011. 

The remaining parts of the paper are structured as follows. In Sections 2 and 3, I 

introduce the forecasting methods I utilize in this study. In particular, Section 2 

introduces and applies the Markov forecasting by Grogger (2007), while Section 3 

discusses and estimates additional, more popular models, namely an autoregressive 

integrated moving average (ARIMA) model, two logistic smooth transition 

autoregressive (LSTAR) models, a vector autoregression (VAR) model, and two 

variants of forecast combinations. Section 4 utilizes these methods to generate the PA 

caseload forecasts, and conducts a forecast evaluation in the validation period. In 

addition, it also conducts a real-time forecasting exercise for the period beyond 2011 

M02. Section 5 then presents the conclusions of the paper. 
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2. Markov Forecasting 

Grogger (2007) proposes a method designed for welfare caseload forecasting. 

Since his method is less popular than the other methods in the next section, I dedicate 

the current section to introducing his innovative method, called the Markov forecasting, 

which I then apply to PA caseloads in Japan. The method exploits the fact that current 

caseload Ct equals to previous caseload Ct1 plus entries Et net of exits Xt, that is, Ct  

Ct1 + (Et  Xt), or 

1(1 )t t t tC x C E         (1) 

where xt  Xt/Ct1 is the exit rate. Grogger regards Eq. (1) as a first-order Markov chain 

that depends on current exits rates and entries, along with the first lag of the caseload. In 

a steady state where the exit rate and the entries are constant (xt = x, and Et = E), Eq. (1) 

converges to / .C E x  This then implies that if the exit rates xt and entries Et were 

held constant in the coming periods, the future caseload would converge to 

/t t tC E x        (2) 

which Grogger refers to as “implied steady state (ISS).” 

Assuming that the ISS constitutes a leading indicator of future caseload levels, 

Grogger uses the following regression model to forecast future caseloads: 

0 1t t L tC C u            (3) 

where ut is an error term and s are coefficient parameters. In Eq. (3), the ISS in period 

t predicts the caseload in period t + L. However, when calculated with raw monthly data, 

the ISS exhibits a large volatility. Figure 3 shows the case for the Japanese PA caseload 

in the first panel. Grogger argues that this volatility contains month-to-month noises. To 

separate such noises from the underlying information that helps predict caseloads, he 

conducts a locally weighted scatterplot smoothing (LOWESS) on the monthly series of 
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exit rates and entries, and constructs a smoothed ISS as a ratio of the smoothed entries 

to the smoothed exit rates. Thus, the actual regression model for the estimation is 

0 1
ˆ ( , ) .t t L E x tC C b b u           (4) 

where Ĉt(bE, bx)  Et(bE)/xt(bx) is the smoothed ISS, xt(bx) and Et(bE) are the smoothed xt 

and Et, and bx and bE are their respective bandwidths. Grogger suggests performing an 

ordinary least squares (OLS) estimation on Eq. (4) for the given values of bE, bx, and L, 

which together minimize the mean square error of forecasts (MSE), with the use of a 

three-dimensional grid search. I conduct the grid search for the three parameters, with L 

from 10 to 36 by 1, and bx and bE from .1 to .9 by .01.
4
 The MSE uses 

one-period-ahead forecasts from rolling regressions with a fixed window of 110 

monthly observations (see Section 4). The regression and validation samples are 

respectively from 2001 M01 to 2010 M02 (110 observations) and from 2010 M03 to 

2011 M02 (12 observations).
5
 I then obtain 5 for L, .5 for bx, and .8 for bE. The three 

panels in Figure 3 show the monthly series for the smoothed ISS, exit rates, and entries, 

along with their original series represented by the dots. Since the two bandwidths are 

rather large, the LOWESS curves do not fit the observed data well. 

Figure 3 

I then estimate Eq. (4) using OLS and obtain the model: 

2

5
ˆ309171 .522 , .826, 110

(31710) (.023)
t t tC C u R N     

   

(Markov) 

where the figures in the parentheses are standard errors. Note that the forecasts are 

rescaled values of the smoothed ISS pushed five periods ahead. Figure 4 describes the 

relations among the rescaled smoothed ISS, forecasts (the rescaled smoothed ISS 

shifted to the right by five periods), and actual caseloads. I anticipate that the 

                                                 
4
 Grogger originally set the grid ranges from 10 to 15 for L by 1 and from .1 to .8 for bE and bx. These 

ranges, however, resulted in corner solutions. I thus expand the ranges as in the text.  
5
 The size of my sample is almost half of Grogger’s, which consist of observations from 1985 M06 to 

2002 M11 (209 observations) for the estimation, and from 2003 M12 to 2005 M03 (28 observations) for 

the evaluation of the forecasts. 
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within-sample fits will be poor when compared to the forecasts that I describe in 

Section 4. In addition, the within-regression sample fits are poorer, since I smoothed the 

ISS so that the MES is minimized without considering the fits within the regression 

sample. To articulate this point, I again perform a grid search for bx, bE, and L so that 

they, in this case, minimize the sum of squared residuals from the regression sample, 

and obtain L = 33, bE = .79, and bE = .17. Because L = 33, the OLS estimation now has a 

smaller sample from 2002 M07 to 2010 M02. The resulting model is 

2

33
ˆ173 .887 , .961, 93.

(22390) (.018)
t t tC C u R N         (5) 

Here, the fitted values in period t are rescaled values of the smoothed ISS in period t  

33. I then plot these fitted values against the actual caseloads in Figure 6. This time, 

while the constant is statistically insignificant, the smoothed ISS appears to be a good 

leading indicator in the regression period. However, the forecasts do not perform well in 

the validation period. This is a typical example of the within sample overfitting which 

results in poor out-of-sample (pseudo real-time) forecasts. 

Figures 4 and 5 

The strength of Markov forecasting lies in its ability to detect a turning point in 

the welfare caseload trajectory (Grogger 2007; Gurmu and Smith 2008). However, the 

PA caseloads here do not exhibit any turning points, which may be the reason why the 

method does not perform well. Nonetheless, if the ISS is a good leading indicator, it 

should have detected, for example, changes in the pace of caseload growth toward the 

end of the validation period. However, this is not the case here. 

 

3. ES, ARIMA, LSTAR, VAR, and Forecast Combinations 

3.1. Exponential Smoothing 

Exponential smoothing (ES) is a popular method of forecasting (Gardner 1985, 

2006). In its very basic formulation, ES has nine types of specifications depending on 
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how we model seasonality and linear trends. Table 1 lists these specifications in 

error-correction form, where St is the smoothed level of the series, Tt is the trend rate, It 

is the seasonal index, ut is the forecast error, and p is the seasonal span. I obtain these 

parameters by minimizing the sum of the squared errors. I select a specification among 

the nine based on the value of the Bayesian information criterion (BIC). Table 2 lists the 

results. The linear-trend model without seasonality yields the minimum value of the BIC, 

resulting in 

1 1 1.897 , (.897) (.205)t t t t t t tS S T u T T u            (ES) 

where St is the log of caseload in period t (St  lnCt). 

Tables 1 and 2 

 

3.2. ARIMA Model 

Modeling welfare caseload evolution as an ARIMA process is a standard method 

(Albritton 1979; Klassen 1997; Chang 2007; Gurmu and Smith 2008; Lazariu et al. 

2012). I follow the standard Box-Jenkins identification procedure. Figure 6 provides the 

correlogram for seasonally differenced first-order differences of the natural log of PA 

caseload (lnCt  lnCt12). The autocorrelation function shows little sign of 

non-stationarity, and the partial autocorrelation function implies autoregression of the 

third order, which together imply that the process is ARIMA(3,1,0)(0,1,0)12, where the 

three elements in the latter parentheses respectively indicate seasonal AR lags, the 

degree of integration, and MA lags. Indeed, a grid search for p and q in 

ARIMA(p,1,q)(0,1,0)12 yields both the minimal Akaike information criterion (AIC) 

and BIC as p = 3 and q = 0. Table 3 lists the estimated coefficients and their standard 

errors, while Figure 7 shows the correlogram of the residuals with little indication of 

autocorrelation of residuals. 

Table 3 and Figures 6 and 7 

 



8 

 

3.3. LSTAR Models 

A threshold autoregression (TAR) model combines different autoregression 

models (branches) with a trigger variable that determines which branch applies. The 

branches may or may not share the same lag structures. Typically, but not necessarily, a 

TAR model uses the lag of the time series it explains as a trigger. Meanwhile, a smooth 

transition autoregression (STAR) model specifies the smooth transition from one branch 

to another, with a function F()[0, 1]. Meanwhile, the logistic STAR (LSTAR) uses the 

logistic function for F() (e.g., Teräsvirta 1994). While the STAR framework has been 

used to model non-linearity in macro-economic variables such as exchange rate (e.g., 

Sarantis 1999) and inflation (i.e., Byers and Peel 2000), the model has never been 

applied to the analysis of welfare caseloads. It may thus be worthwhile to apply the 

LSTAR model to forecast welfare caseloads here. 

I first consider an LSTAR model where two branches have the same lag structure 

(LSTAR1). With some diagnostics, I formulate and estimate LSTAR1 as 

1 2 12 13

10 1

2 12

ln .105 .828 ln .180 ln .627 ln .643 ln
(.029) (.075) (.081) (.078) (.070)

1/{1 exp[ 27.035 (ln 13.933)]} ( .656 .227 ln
(10.401) (.008) (2.398) (.396)

.322 ln .166 ln
(.356) (.363)

t t t t t

t t

t t

C C C C C

C C

C C

   

 

 

    

     

   13

2

.215 ln )
(.514)

.999, 110.

t tC u

R N

 

 

 (LSTAR1) 

where the figures in parentheses are standard errors. However, the last five parameter 

estimates in the second branch are all statistically insignificant. I then estimate a 

restricted version of LSTAR1 (LSTAR2) as 

1 2 12 13

10 1

2

ln .098 .851 ln .157 ln .603 ln .618 ln
(.029) (.072) (.078) (.075) (.068)

1/{1 exp[38.297 (ln 13.930)]} ( .618 1.103 ln ) .
(8.603) (.002) (.068) (.396)

.999, 110

t t t t t

t t t

C C C C C

C C u

R N

   

 

    

       

 

 (LSTAR2) 

With this restricted version, all of the coefficients are statistically significant. 
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I use both LSTAR1 and LSTAR2 to generate the forecasts for PA caseloads. 

However, since the path of the forecasts of an LSTAR model depends on the initial 

situation (e.g., the distance of the shock from a transition point) due to its non-linearity, 

the non-stochastic calculation of a series of the forecasts simply maps out just one of a 

number of possible forecast paths. I thus conduct random simulations to replicate 

10,000 forecast paths and average them to produce the point forecasts of the two 

LSTAR models. 

 

3.4. VAR model 

I then examine a vector autoregression (VAR) model. The model includes PA 

caseloads, unemployment rates, and elderly ratio (the ratio of those aged 65 years and 

above to the total population). While including the unemployment rate is standard 

(Smith 1991; Lazariu et al. 2012), including the elderly ratio may be specific to the 

Japanese case. This is because Japanese PA also covers the elderly population, and the 

recent increase in caseloads partially reflects the increasing number of the elderly who 

have little or no pension benefits (Hayashi 2010). I take the natural logs of the caseloads 

(as in the other models except the Markov forecasting) and the elderly ratio as they are 

both trending variables, and leave the unemployment rates in level (percentage) as they 

are non-trending. Note that I do not difference the caseload data despite the fact that the 

ARIMA analysis implied that the series is non-stationary. In ARIMA modeling, 

appropriate differencing is important since it is impossible to identify the stationary 

structure of the process using the autocorrelations of an integrated series, and most 

algorithms used for fitting ARIMA models fail when confronted with integrated data. 

Neither applies to VAR models. In addition, even if variables are non-stationary and/or 

co-integrated, the OLS estimators of the VAR coefficients are consistent (Hamilton 

1994). 
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I select the lag p of VAR(p) from 1 to 13 to minimize the MSE in the validation 

sample. This, in effect, is a performance comparison among a symmetric class of VAR 

models with the different lag lengths. The model with p = 6 surpasses the other 

alternatives. Table 4 lists the estimation results for VAR(6). The bottom of the table lists 

the P values for the Granger causality tests, which employ the lag-augmented VAR 

(LA-VAR) by Toda and Yamamoto (1995). I use LA-VAR(8), allowing for possible 

integrated or co-integrated variables for up to the second order. The tests imply that the 

elderly ratio and PA caseload do not Granger-cause the unemployment rate and elderly 

ratio, respectively. Nonetheless, I do not exclude them when I forecast the PA caseloads, 

since doing so weakens the fits of the forecasts. 

 

3.5. Forecast Combinations 

Lastly, I perform forecast combinations, which combines the forecasts generated 

by all or a subset of the six models (i.e., Markov forecasting, ES, ARIMA, LSTAR1, 

LSTAR2, and VAR). I perform the forecast combinations because even when a model 

performs worse than the other models, it may not be clear if it is appropriate to ignore 

the former model completely. We may best view a forecasting model as a simple 

approximation of a more complicated and/or constantly changing data generating 

process. If so, such a view implies that a forecasting model is necessarily misspecified. 

If forecasts from multiple forecast models are available, therefore, combining their 

forecasts may diversify forecasting errors otherwise not possible from a single forecast 

model. In fact, the literature shows that combining forecasts from different models 

outperform forecasts from a single model (Elliott and Timmermann 2008; Aiofli et al. 

2011). An issue with this strategy, however, is how to weigh the multiple forecasts. 

In this study, I first use a simple average, which the literature shows often 

outperforms other weights that are deliberately designed (Elliot and Timmermann 2008). 
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I call the combined forecasts with the equal weights as Combined Forecasts 1 (CF1). In 

addition, one may improve forecast performance by trimming the group of the models 

for combination to a subgroup of the better performing models (Aiolfi and Timmermann 

2006). For the current case where there are only six models, I exclude only the model 

that performs worst. I call the simple-averaged forecasts based on the trimmed group as 

Combined Forecasts 2 (CF2). 

   

4. Performance Comparison 

4.1. Pseudo real-time forecasting 

I use data for PA caseloads from 2001 M01 to 2011 M02 (T = 122), which I 

divide into two sub-samples: a regression sample from 2001 M01 to 2010 M02 (N = 

110) and a validation sample from 2010 M03 to 2011 M02 (P = 12). I calculate the 

forecasts for the validation periods to perform pseudo real-time forecasting (Elliot and 

Timmermann 2008), that is, I generate the forecasts ft for each month in the validation 

sample as if I were actually forecasting in real time. For each of the forecasting methods 

(i.e., Markov, ARIMA, LSTAR1, LSTAR2, VAR, CF1, and CF2), I generate three types 

of forecasts. First, I recursively generate forecasts (fN + 1|N, . . . , fT|N) from a fixed origin t 

= N (i.e., 2010 M02) for all the P periods. The original regression sample generates 

forecasts with a fixed window. Figure 8 describes their forecasts. Note that this is 

analogous to the procedure forecasters use in real time. Second, I generate 

one-period-ahead forecasts ft + 1|t for t > 2010 M02 using samples with an expanding 

window. I estimate the forecasting model for ft + 1|t with all the data available from 2001 

M01 up to t. I repeat this process P times to generate a series of P one-period-ahead 

forecasts (fN + 1|N, fN + 2|N + 1, . . . , fT|N + P  1). The regression sample thus expands by one 

observation every time I update the forecast for the next period. Third, I use samples 

with a rolling window. This is analogous to the case of an expanding window except 
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that I drop the earliest observation when I update an additional forecast, thereby using 

the fixed size of observations of 110 months that precede period t + 1, that is, the 

sample for obtaining fN + h|N +h  1 consists of C1 + h, . . . , CN + h  1. 

Figure 8 

I then compare the series of forecasts to the observations of PA caseloads in the 

validation sample. For each of the three modes of forecasting (fixed, expanding, and 

rolling), I obtain the mean absolute error (MAE = |Ct  ft|/P), root mean squared errors 

(RMSE = [(Ct  ft)
2
/P]

1/2
), and mean error (ME = (Ct  ft)/P) to evaluate the 

performance of the forecasting methods. The ME may be less popular for this type of 

evaluation. However, since budget planning is usually performed annually, large 

month-to-month errors may not be a serious problem as long as they average to zero 

within a year (12 months). The ME indeed captures such averaging. Note that I 

calculate MAE, RMSE, and ME using caseloads in level. Since the five methods except 

the Markov forecasting transform the caseload into log, I reverse the transformation to 

obtain the forecasted PA caseload in level. 

Table 5 lists the MAE, RMSE, and ME. First, for the fixed sample evaluation. ES 

performs the worst, followed by Markov forecasting. The best model is either CF2 (a 

simple average that excludes exponential smoothing) with MAE, or VAR with both 

RMSE and ME. LSTAR1 fares relatively well, being either the second best or third best 

model. However, possibly in contrast to a common expectation, CF1 (a simple average 

of the six methods) shows mediocre performance, which may be due to the fact that I 

only deal with six forecasting methods. Second, the expanding-window evaluation 

changes the ranking. In particular, the ARIMA model now performs worst in terms of 

all the three measures, although the Markov forecasting remains the second worst 

performer as before. Note that the VAR model and CF2 continue to perform well. Third, 

the rolling-window evaluation gives another different picture. Here, the ARIMA model 
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is the best model in terms of RMSE and ME, and the second best in terms of MAE. In 

addition, possibly reflecting the performance of the ARIMA model, CF1 ranks the first, 

second, and third, respectively, in terms of the MAE, ME, and RMSE. However, the 

VAR still fares relatively well, being the second best in terms of the RMSE, and the 

third best in terms of the MAE and ME. Overall, the forecast evaluation for the period 

2010 M03 to 2011 M02 indicates that the VAR and one of the combined forecast 

models perform consistently well in each type of forecast. The good performance of the 

VAR model is consistent with the previous study on welfare caseload forecasting by 

Lazariu et al. (2011). The results of the combined forecasts also parallel the findings of 

Aiolfi et al. (2011), who state that “even if forecast combinations do not always deliver 

the best forecasts, they do not generally deliver poor performance, thus from ‘risk’ 

perspective they represent a safe choice.” 

Table 5 

I next compare more formally a pair of forecasts by conducting the 

Diebold-Mariano (DM) test (Diebold and Mariano 1995). In this comparison, it is 

important to note the following points. First, I base the test statistics on the RMSE. 

Second, I utilize only the forecasts generated by the fixed sample method. This is 

because this study is interested in real-time forecasting, that is, obtaining a series of 

forecasts and exhausting all the currently available data to determine how the caseload 

would evolve over the coming months, which I perform for the period beyond 2011 

M02, as shown below. Third, I do not compare between LSTAR1 and LSTAR2 since 

LSTAR1 nests LSTAR2.
6
 Table 6 shows the P values of the DM tests. The far-left 

column lists the null hypothesis (model) to be tested, and the top row lists the 

alternative hypothesis (model) to be tested when the associated null hypothesis is 

rejected. Among the eight forecasts, LSTAR1, VAR, and CF2 are not rejected against 

                                                 
6
 If we apply the DM test to a pair of models in which one nests the other, the distribution of the test 

statistics will be non-standard. 
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any of the alternative models, barring the fact that LSTAR1 is not tested against 

LSTAR2. Thus, setting aside LSTAR1, VAR and CF2 are among the best models, 

although their differences are not identified statistically. Note that Ashley (2003) argues 

that more than 100 forecasts are necessary to establish significant differences in 

predictive accuracy across models. The results in Table 6 should thus be taken with 

caution since they rely on only 12 forecast values. However, as all of the P values for 

the well-performing models are close to one except when they are compared among 

themselves, I do not necessarily have to be too cautious on this point. 

Table 6 

 

4.2. Real-time forecasting 

I finally conduct a real-time forecast for the period beyond 2010 M02. In this 

forecast, it is important to note the following. First, the Markov forecasting can only 

provide forecasts up to 2010 M07 since it is based on the smoothed ISS with a lag of 

five (See Eq. 5). In addition, I exclude the Markov forecasting when I construct CF2 for 

the real-time forecasting since the five forecast values for the methods implies the worst 

forecasting values, as shown below. Second, since I can use the information from the 

validation sample, I can now exploit two more types of more elaborate forecast 

combinations with weights that require information ex-ante to the forecast origin (2010 

M02). Note that I exclude the forecasts from the Markov forecasting again when I 

construct the following two more elaborate weights. 

One of the weights comes from inverse mean-squared-errors weighting (Bates 

and Granger 1969). This scheme, which I call CF3, weighs forecasts made by the jth 

forecasting method with 

1/
.

1/

j

j

ii

MSE

MSE
 


       (CF3)  
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I use the MSE calculated from the RMSE listed in the third column in Table 5 

(excluding the Markov forecasting). 

The other weight (CF4) comes from a scheme by Granger and Ramanathan 

(1984), which takes advantage of the estimates from the following regression model: 

residuals for .t j jtj
C f N t T          (CF4) 

The five estimated coefficients, in addition to the constant, rescale their corresponding 

forecasts generated beyond 2011 M02. By construction, these “weights” do not 

generally add up to unity. As shown in Table 7, the fit of the regression is very good (R
2
 

= .9999 and R
_

2
 = .9998). However, these “weights” turn out to be quite different from 

what we usually think are weights. First, as expected, they do not add up to unity, 

although, when excluding constant , the sum of the six coefficients is close to one 

(1.012). Second, however, there are three negative coefficients (.722 for ES, .719 for 

LSTAR1, and .234 for LSTAR2). Third, the coefficient (“weight”) on the forecasts 

from the VAR model is more than unity (1.696). 

Table 7 

I then conduct real-time forecasting to predict the PA caseloads for the period 

beyond 2011 M02 up to 2016 M02 (i.e., 5-year or 60-month horizon). Using all the 

available data from 2001 M01 to 2011 M02, I estimate the six forecasting models (i.e., 

Markov, ES, ARIMA, LSTAR1, LSTAR2, and VAR) as specified in the previous 

sections, and four forecast combinations (CF1, CF2, CF3, and CF4) as described above. 

Figure 9 describes their forecasts. 

Figure 9 

Not surprisingly, each of the individual (i.e., non-combined) forecasts behaves 

erratically in the longer term. Furthermore, although their behaviors are more or less 

similar in the validation period (recall Figure 8), they now are quite different. The 

Markov forecasting, which has only five forecast values, appears to predict the largest 



16 

 

level of caseloads for the limited periods of forecasting. The ES also exhibits constantly 

increasing caseloads that amount to well beyond 2 million toward the end of 2015. 

Likewise, the ARIMA shows another case of increasing caseloads, which, while not as 

sharp as that of the ES, is also substantially high at just below 2 million by the end of 

the period. On the other hand, although the forecasts of the two LSTAR models slowly 

increased in the early periods, they declined over time. This would be implausible given 

the current trends in socio-economic factors affecting PA in Japan, such as the rapidly 

aging population and the stagnant economy. The VAR exhibits another implausible 

movement. At the earlier stages, its forecasts started decreasing more rapidly than those 

of the two LSTAR models, then started increasing at the beginning of 2014. This may 

be striking since the VAR model performed quite well in the pseudo real-time 

forecasting. These erratic and different behaviors of the individual forecasts are quite 

different from those in the pseudo real-time forecasting. This result implies that good 

performance in the validation period, which is typically short for this study, may not 

constitute a sound foundation for longer-term forecasting. 

Finally, let us consider the four forecast combinations. Since the Markov method 

can only generate forecasts up to 2011 M07, recall that I excluded its forecasts from 

CF3 and CF4. I only calculate CF1 up to 2011 M07, which may not merit discussion 

here. As for CF2, I drop the forecasts from the Markov model as it appears to be the 

worst performing model, as shown in Figure 9. I thus construct CF2 as a simple average 

of the five remaining models. I also exclude the forecasts from the Markov forecasting 

from CF3 and CF4. It may be surprising that these two more elaborate forecast 

combinations behave more erratically than the forecasts from some of the individual 

models. In particular, the forecasts by CF4 starts to decrease as early as in 2011 and 

continue to do so until mid-2013, and then increases rapidly so that it exceeds the 

forecasts made by CF2 for 2015. This is because the CF4 has the largest “weight” of 
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1.696 on the forecasts by the VAR model, and the VAR model behaves quite erratically, 

both as described above. The behavior of the CF3 forecasts is less erratic when 

compared to those of CF4. However, it still exhibits a decrease that starts in mid-2012. 

The forecasts by CF2, a simple average of the forecasts by all methods except 

Markov forecasting, appear to be a safe choice in that it demonstrates the most plausible 

future path of the PA caseloads given the available information that would affect 

caseloads in the future, including the expected rapid aging of the population, continuing 

stagnant economy, and changing labor market practices in the country. The caseload 

forecasts by CF2 consistently increase beyond 2011 M02 with an inflection point 

around early 2014, reaching more than 1.7 million toward the end of 2015. In fact, by 

the time I completed this forecast calculation (i.e., 2012 M03), the data on PA caseloads 

have become available to the public for up to 2011 M12. While these values are not 

finalized except those for 2011 M03, the forecasts by CF2 appear to perform well when 

compared to the other forecasts. While they underestimate the reported values, the 

monthly differences are only 2,036 (.14%), 1,555 (.11%), 3,858 (.26%), 4,460 (.30%), 

4,662 (.31%), 6,391 (.43%), 6,064 (.40%), 5,638 (.38%), 6,772 (.45%), and 7,933 

(.52%) from 2011 M03 to 2011 M12. Considering the percentage errors in the 

parentheses are all below 1%, this performance is outstanding despite the increase in PA 

caseloads brought about by the Great East Japan Earthquake in March 2011. In addition, 

this may constitute another case of a “forecast combination puzzle,” where simple 

combinations of point forecasts repeatedly outperform other sophisticated forecast 

combinations (Smith and Wallis 2009). 

 

5. Concluding remarks 

Forecasting welfare caseloads has become more important than ever in Japan due 

to the recent rapid increase in its PA caseloads. Given the fact that most previous 
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studies only concern US cases and have not exploited recent developments in the 

literature, this study employed several forecasting methods (ES, ARIMA, LSTAR, 

VAR, and a set of forecast combinations) to predict Japanese PA caseloads and 

compared their performances. This study showed that while a VAR model and one of 

the forecast-combination methods tend to outperform the other methods in pseudo 

real-time forecasting, a simple average forecast combination appears to outperform 

them in real-time forecasting. In particular, the simple average forecasting predicts that 

PA caseload in Japan would surpass 1.7 million by the end of the forecast period (2016 

M02), approximately a 20% increase from the beginning of 2011. 
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Table 1. Basic Models of Exponential Smoothing in Error Correction Form 

Seasonal 
 

Trend 
No Seasonality Additive Multiplicative 

No Trend St = St1 + ut 
St = St1 + ut 

It = Itp +(1)ut 
St = St1 + ut/Itp 

It = Itp +(1)ut/St 

Linear 
St = St1 + Tt1 + ut 

Tt = Tt1 + ut 

St = St1 + Tt1 + ut 
Tt = Tt1 + ut 

It = Itp +(1)ut 

St = St1 + Tt1 + ut/Itp 
Tt = Tt1 + ut/Itp 

It = Itp +(1)ut/St 

Exponential 
St = St1Tt1 + ut 

Tt = Tt1 + ut/St1 

St = St1Tt1 + ut 
Tt = Tt1 + ut/St1 

It = Itp +(1)ut 

St = St1Tt1 + ut/Itp 
Tt = Tt1 + ut/(It 

It = Itp +(1)ut/St 

 

Table 2. Model Selection for Exponential Smoothing 

Seasonality Trend BIC 

None None 794.5 

Additive None 776.1 

Multiplicative None 776.0 

None Linear 1,173.2 

Additive Linear 1,169.2 

Multiplicative Linear 1,169.1 

None Exponential 1,168.9 

Additive Exponential 1,164.8 

Multiplicative Exponential 1,164.6 

 

Table 3. Estimation Results: Dependent Variables lnCt  lnCt12 

Variable Coeff. S.E. P values 

Constant 0.001 (0.001) 0.652 

lnCt1  lnCt13 0.224 (0.090) 0.014 

lnCt2  lnCt14 0.258 (0.088) 0.004 

lnCt3  lnCt15 0.391 (0.091) 0.000 

Sample Size 110   

R
_

2
 0.999   

P-value for Q Stat. 0.11   
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Table 4. Estimation Results: VAR(6) 

Dependent Variable 

 
Log of Caseloads Unemployment Rate Log of Elderly Ratio 

Variable Lag Coeff. S.E. Coeff. S.E. Coeff. S.E. 

Log of 

Caseloads 

1 .897  (.102)
***

 .131  (.109) .033  (.069) 

2 .238  (.138)
*
 .068  (.148) .091  (.094) 

3 .113  (.138) .109  (.148) .096  (.094) 

4 .142  (.126) .205  (.135) .064  (.085) 

5 .094  (.120) .010  (.128) 0.063  (.081) 

6 .218  (.096)
**

 .097  (.103) 0.024  (.065) 

Unemployment 

Rate (%) 

1 .104  (.094) .708  (.101) 0.178  (.064)
***

 

2 .310  (.115)
***

 .077  (.123) 0.203  (.078)
***

 

3 .410  (.121)
***

 .134  (.130) 0.086  (.082) 

4 .317  (.130)
**

 .009  (.139) 0.103  (.088) 

5 .088  (.133) .093  (.143) 0.123  (.090) 

6 .108  (.106) .011  (.114) 0.052  (.072) 

Log of Elderly 

Ratio 

1 .206  (.158) .202  (.169) 1.030  (.107)
***

 

2 .039  (.222) .041  (.238) 0.076  (.150) 

3 .262  (.219) .231  (.235) 0.159  (.148) 

4 .040  (.224) .057  (.240) 0.098  (.152) 

5 .135  (.220) .494  (.236)
**

 0.046  (.149) 

6 .037  (.149) .371  (.160)
**

 0.020  (.101) 

Constant .291  (.119)
**

 .069  (.128) 0.043  (.081) 

S.E. of Estimate .002  
 

.002  
 

.001  
 

SSR .000  
 

.000  
 

.000  
 

DW 1.802  
 

1.998  
 

1.983  
 

P values for Granger (non-) causality tests with LA-VAR(8) 

Log of Caseloads .000  
 

.001  
 

.550  
 

Unemployment Rate .002  
 

.000  
 

.004  
 

Log of Elderly Ratio .066  
 

.236  
 

.000  
 

Notes: “Elderly ratio” refers to the ratio of those aged 65 years and above to the total population. 

Asterisks ***, **, and * indicate statistical significance at the .01, .05, and .10 levels, respectively. 

The Granger non-causality is examined using the lag-augmented VAR. 
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Table 5. Forecasting Performance: 2010 M03 to 2011 M02 

 

Fixed Expanding Rolling 

MAE RMSE ME MAE RMSE ME MAE RMSE ME 

Markov forecasting 9,572 (7)  11,515 (7)  9,572 (7)  4,320 (7)  6,283 (7)  3,750 (7)  4,388 (8)  4,714 (8)  1,895 (7)  

ES 12,962 (8)  17,747 (8)  12,635(8)  2,182 (4)  2,399 (3)  1,547 (5)  2,289 (7)  2,491 (4)  1,727 (6)  

ARIMA 6,823(5)  8,126 (5)  6,823 (5)  6,823 (8)  8,126 (8)  6,823 (8)  1,199 (2)  1,366 (1)  267 (1)  

LSTAR1 1,636 (3)  1,736 (2)  1,359 (3)  1,708 (3)  2,984 (4)  757 (3)  1,714 (4)  2,983 (6)  793 (4)  

LSTAR2 8,769 (6)  11,342 (6)  8,664 (6)  2,317 (5)  3,669 (6)  480 (1)  2,154 (5)  3,619 (7)  824 (5)  

VAR(6) 1,363 (2)  1,722 (1)  400 (1)  1,465 (2)  1,722 (1)  751 (2)  1,347 (3)  1,598 (2)  524 (3)  

CF1 (simple average) 3,101 (4)  4,253 (4)  3,101 (4)  2,510 (6)  2,984 (4)  2,351 (6)  1,169 (1)  1,761 (3)  373 (2)  

CF2 (simple average, excluding 

ES) 
1,316 (1)  1,795 (3)  1,195 (2)  1,177 (1)  1,751 (2)  827 (4)  2,221 (6)  2,602 (5)  2,071 (8)  

Note: The numbers in parentheses are the rank of the forecasting methods according to their respective loss functions. 
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Table 6. Diebold-Mariano Tests (P values) 

Alternative 

Null 

Markov 
Forecasting 

ES ARIMA LSTAR 1 LSTAR 2 VAR(6) CF1 CF2 

Markov Forecasting  0.988 0.017 0.006 0.409 0.005 0.004 0.005 

ES 0.012  0.012 0.009 0.018 0.008 0.008 0.008 

ARIMA 0.983 0.988  0.002 0.997 0.001 0.000 0.001 

LSTAR 1 0.994 0.991 0.998  n.a. 0.486 0.964 0.549 

LSTAR 2 0.591 0.982 0.003 n.a.  0.002 0.001 0.002 

VAR(6) 0.995 0.992 0.999 0.514 0.998  0.975 0.588 

CF1 (simple average) 0.996 0.992 1.000 0.036 0.999 0.025  0.017 

CF2 (simple average, 
excluding ES) 

0.995 0.992 0.999 0.451 0.999 0.412 0.983  

Note: LSTAR1 and LSTAR2 are not compared since the former nests the latter.
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Table 7. Regression Weights 

 

Coeff. “weight” S.E. P values 

Constant 16,395  32,274  0.630  

ES 0.722  0.336  0.075  

ARIMA 0.991  0.234  0.005  

MSTAR1 0.719  0.808  0.408  

MSTAR2 0.234  0.592  0.706  

VAR 1.696  0.442  0.009  

R
2
 0.9999  

  
 R

_

2
 0.9998   

N 12 
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Figure 1. Public Assistance Caseloads in the 2000s 

 

 

Figure 2. Percent Monthly Changes in Public Assistance Caseloads in the 2000s 
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Figure 3. ISS, Entries, and Exit Rates
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Figure 4. Markov Forecasting: Out-of-sample Fitting 

 

 

Figure 5. Markov Forecasting: Within-sample Fitting 
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Figure 6. Correlogram for lnCt  lnCt12 

 

 

Figure 7. Correlogram for Residuals 
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Figure 8. Pseudo Real-time Forecasting 
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Figure 9. Real-time Forecasting 
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