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A Kinship Model Based on Branching Process
Toru SUZUKI

Introduction

Pullum (1982) developed a kinship model by which one can derive detailed frequency
distribution of various kin categories, Since the model is developed on the basic branching process
(Harris, 1963), it does not have the age structure and produces only eventual numbers. On the
other hand, hismodel can provide not only the mean but also the higher moments for any distant
kin in a relatively simple way.

The first section in this article is devoted to reviewing the essence of Pullum’s model. Pullum
showed how frequencies of female kin are calculated by using branching process.

The second section examines extension of the model to two sexes. There is a misleading
assertion in Pullum’s article. Iwill show that the relation of two sex variance to one sex variance
is not so simple as suggested by him.

In the third and fourth sections, I will attempt some extensions of Pullum’s model. The
assumptions on marriage implied in the model are, i) the number of siblings is independent
between spouses, 11) there is no remarriage. I will try to relax these assumptions in limited ways.

For the latter issue, a general model of remarriage has been developed by Goldstein (1994). 1
will limit myself to specific forms of remarriage and obtain such basic moments as the mean and
variance.

1. One Sex Model
The starting point of the female one sex branching process is the probability distribution in the
eventual number of daughters.

fo=Pr (k daughters) (1)
The generating function is useful to obtain various moments of the number of daughters.
f(s) =) fis* (2)

k=0

The mean number of daughters, or net reproduction rate (NRR), is given as the differential of
the generating function with s=1.

N=£" () (3)

The second derivative of the generating function with s=1 gives the expectation of A%—k.
Thus, the variance of daughters is,




ak=r" (D= Lf (DF+f(D. (4)

To obtain the distribution of lateral kin, we need to prepare the same set for sisters. The
number of sisters can be expressed with the number of daughters seen from the mother. For ego
to have k sisters, her mother needs to have A+ 1 daughters. If ego is randomly chosen from
generation 7, which size is denoted by Z;, Z; ., gives the number of all potential mothers. Since the
number of egos produced by mothers who eventually had k=1 daughters is Z;_,f,, ;, and the ratio
of daughters to mothers is the mean number of daughters, probability of % sisters is given as
follows :

ge=Z5 fees Rt D= f v D) (5)

Substituting this into the definition of the generating function, sisters’ generating function can

be expressed as follows.

g($)= ) gt =4 () ®
k—

Because of this relationship, a moment of sisters has the one degree higher moment of
daughters. For example, the mean of sisters S contains the variance of daughters.

S=2 yo g 0
- N

The variance of sisters contains the third moment of daughters.

of;
(N——+ (8

3 2
U§=M+~UN
N N

Pullum showed that the mean and variance of every kin category can be expressed with N, of,
S, and of because generating function for each category can be obtained easily by nestings of
f(s) andg (s). It is convenient to work on Atkins’ scheme for various kin categories (Figure 1).
Each arrow is drawn from mother to daughter. Each vertex is labelled with i and 7, where 7 is the
generational difference between the common ancestor and ego, and 7 is that between the common
ancestor and the kin in concern.

Figurel Atkins’ (i, J) Lattice for Female Kin

0,00 Ego 4¢—————— (0,1) Mother +————— (0,2) Grandmother
(1,0) Daighter (1,1) Sister (1,2) Aunt
(2,0) Granddaughter (2,1) Niece (2,2) Cousin



For direct ancestors (=0), the eventual number is always one since this is a one sex model.
The generating function for these categories is a constant, f (s) =s. For direct descendants
(7=0), a primary theorem of branching process (Harris, 19683, p.5) tells that generating functions
are nestings of f(s). Thus, the generating function for granddaughters is f [f (s)], that for
great-granddaughtersis f [f [f (s)]], and so forth.

Lateral kin with the same i shares the same generating function. If a lateral kin is a daughter
of one of direct ancestors, then i =1 and generating function is g (s). Granddaughters of direct
ancestors have generating function g [f (s)], great-granddaughters have g [f [f (s)]], and so
forth.

. Table!l Moments in One Sex Model
In this way, one can get gen-

erating function for any dis- Kin Generating Function Mean Variance
tant kin. This means that one Mother s 1 0
can get any moments for all Grandmotehr s 1 0
kin categories. Table 1 is the Daughter £(s) Nz o ,
summary of mean and vari- Granddaughter  f[f(s)] N N(N+1)d}
< : 2

ance ezxprebsed with N, oy, S, Sister 2 (s) S o
and os. Aunt g(s) S 0f

_ Niece glfis)l = NS N’oi+Saf,
2. Extension to Two Sexes Cousin (female) g [f(s)] NS N?cé+So;,

It is easy to generalize the
model to two sexes by using the fact that the sex composition of given number of children
distributes binomially'. Let 7 be the probability that a child is female. Given the number of
children of both sexes, denoted as C, the number of daughters D has the binomial distribution with
C and 7 as parameters.

Pr(D=d|C=c)=(§) " (U—7)* % DIC~Binomial (C.7) (9

Then, the product yC gives the conditional mean £ (D|C). The unconditional mean of daughters
E (D) is the mean of this conditional mean. It turns out that there is a simple relationship

between one sex and two sex means.
1 1
E(C)=—E(D)==—N (10)
T 4
It is nice that this simple relation holds for any kin. Two sex mean is always some multiplier

times one sex mean, as shown in Table 2. And as Pullum stated (1982, p.555), the multiplier can
be obtained easily from 7 and j in Atkins’ scheme.

2 for 1=0 (direct ancestors)
ki=1 (1/7) for 7=0 (direct descendants)
271 (1/y)y otherwise (lateral kin)

1 The assumption is that there is no parental control on the sex of a newborn, which guarantees
the sex of each child to be identical and independent Bernoulli event.




Pullum went further and wrote as follows (1982, p.556).

“For moments of order m about the mean, m > 1, the multipliers will simply be

0 fori=0
ki]’= (1/')’)"” fOl‘jZO
2mm (1)) otherwise.”

This gives an impression that two sex moment is always as simple as the multiplier times the
one sex moment. Let us check this for variance. Since the variance is the second order moment
about the mean, m equals to 2. If the simple relation holds, the two sex variance of children
should be equal to (1/7)? times the one sex variance because i=0 and j=0 for children.

Recall that the variance in binomial distribution is given by y (1 —7) C. This is the conditional
variance of daughters given the number of children of both sexes, and can be written as
var (D|C). Recall that the formula which relates conditional and unconditional variances is,

var (D)=var [E (D|C)]+E [var (D|C)].

By applying this, the relationship between one sex and two sex variances turns out to be as
follows.

var (€)= var (D)~ (I=1) B (D)1= o= (2 =7) ] (1)
Thus, the relation is not as simple as suggested by Pullum even for such direct kin as children.

For more distant kin, the relationship becomes much more complicated as shown in Table 2. Two
sex moments are always expressed with asterisks.

Table2 Moments in Two Sex Model

Kin Mean Variance
Parents 2 0
Grandparents 4 0
Child N'=—£—N o= 71_9 {of— (1 —7) N}
Grandchild N‘2=%N‘? N (N'+1) 03,2=~7—{4—N (N+7) {05— (-7 N}
Sibling 5'=7s U§2=—7{7 {02~ (1= S)
Uncle/Aunt ZS'='7S 20§2=—f—2 {oi—(1-7) S}
Nephew/Niece NS~ =—]¥2§ NioZ+S o= N’ (05— $) 478 (U’ZTNE) —r =) NS
Cousin 2N‘S'=%\Zi 2 (Vo +8 o) = (0= S) +7S (Uisz) —rU-p) NS




This fact does not change the conclusion on the correlation between frequency of kin in Pullum
and Wolf (1991). They showed that, in homogeneous and independent case as in the stable
population, correlation exists only between direct descendants, and the correlation coefficient is
simply a function of the mean number of daughters. For example, the correlation between the
frequency of daughters and granddaughters is expressed as follows (p.397).

_ N

= Ni7 (12)
Because only the mean matters, their conclusion is not affected by the relationship between one

sex and two sex variances.

3. Dependence in the Number of Siblings

In the two sex version of Pullum’s model, the independence between the sibling frequency of
husband and that of wife was assumed. This means that a woman marries a man regardless of
how many siblings he has, and vice versa. Two ideal cases in which this condition is dropped is
discussed here to see how marriage pattern can alter the distribution of lateral kin.

First, assume that a husband always has the same number of siblings as his wife has. In this
case of perfect homogamy, the number of uncles and aunts of both lines is simply twice as much
as that of maternal line. If K is the number of siblings of a mother, 2K is the number of all uncles
and aunts seen from her child. The basic theorems on the multiplication of a random variable
show that the mean is 25" and the variance is 407

Let / be the number of cousins. Since the model assumes the homogeneous and independent
reproductive behavior, the conditional mean and variance of / given K are 2K N and 2Ko;?. Using
the basic theorems on conditional moments, we can show that the unconditional mean of J is
2N"S" and the unconditional variance is 4Noy* + 2S '05?. Comparing these moments with those in
Table 2, it can be shown that the perfect homogamy makes no change with mean but raises the
variance of lateral kin.

Second, let us see what happens if a woman with no siblings never marries with a man with no
siblings. A marriage between sole children may cause problems, especially in traditional settings.
In such a case, one of family names will die out. In addition, the young couple may not be able to
take care of parents of both spouses, because there is no sibling to share the task of supporting
elderly.

If marriages between sole children are strictly excluded, then every member of the society has at
least one uncle or aunt ever born. This can be seen as a simple problem of conditioning.

Let gx be the probability function of sibling frequency, the two sex version of g.. Let I be an
indicator variable which takes one when the marriage is “valid”, namely, at least one of couple
has at least one sibling. Then, the probability of /=0 is that of sibling frequency is zero for both
spouses, which is g5

Let X bethe frequency of uncles and aunts. As in Table 2, the mean number of uncles and aunts
is 257 in the case of independence. This unconditional mean should be the mean of conditional
means conditioned by /.



25'=g;’E (X|I=0)+ (1 —g»H E (X|I=1)

Since E (X |I=0) is the mean number of uncles and aunts when neither paxent has any siblings,
it is zero. Another conditional mean E (X|/=1) is the goal here, the mean of uncles and aunts

when marriages between sole children are excluded.

28"
1—gy*

EX|I=D= (13)

To get the conditional variance var (X|I=1), it is necessary to kmow the variance of

conditional means.

var [E (XID]=g;# (0—2S"Y+ (1 —g;%) (j%g;-?—gs-)z: 4S°*

- _ 2
Z; T-gf

Using the fact that var (X) =20% and var (X|I=0) 0, and applying the formula var (X) =
var [E (X|D)]+E [var (X|I)],

2088+ 4S* 48
1—g;* (I—g;®)*

var (X|I=1)= (14)

This is the variance of uncles and aunts when marriages between sole childxen are excluded. The
same conditioning can be done for the frequency of cousins. The mean and variance of cousins
after the exclusion of invalid marriages would be as follows :
2N'S”

1—g;?

EX|I=1)= (15)

20N ?+20S"+4N'S"  4N'*S°

16
1-g;° (7-g:%)* (16)

var (X|I=1)=

It is easy to see that conditional means are always greater than the original means. For the
conditioning to be meaningful, g; should be greater than zero. Then, I/ (I—g;%) in (13) or (15)
works as an inflater. On the other hand, conditional variances can be greater or smaller than the
original variances. It depends on the shape of distribution.

4. Remarriage and Half-Siblings

An analytical model of remarriage is surprisingly difficult. One needs to make many
assumptions to save desirable simplicity. I repeat four of five assumptions made by Goldstein
(1994, p.7).

1) All the births are given during a marriage of a woman.

(1)
(2) The father of a child is always the marital partner of a woman.
(3) A remarriage does not change the complete fertility of a woman.
(4) The fertility rate is the same for each marriage.



The number of marriages experienced by a woman is called “marity”, by analogy with “parity”,
in the Goldstein model (p.7). Assumptions (3) and (4) claim the independence between marity and
parity of a woman.

In addition to these assumptions, [ will limit marity up to twice and exclude marriages between
ever married persons to examine half-siblings from different father and that from different
mother separately. Thus, instead of independence in marity assumed by Goldstein, mutual
exclusiveness is assumed here.

(5) No one marries three times, namely, the maximum marity is two.
(8) The spouse of a remarried person is always first married.

Goldstein gave the probability functions of half-siblings in a general setting (1994, pp.11-12).
My goal here is to derive the specific expressions for the mean and variance of half-siblings, which
Goldstein did not show.

4-1. Mother’s remarriage and half-siblings from different father

Let I be an indicator variable to mark a remarriage of a woman, and py be its probability.
Then, py=Pr (I=1).

If a woman married twice (/=1), we want to know the distribution of her children between two
marriages. Let £, be the duration of her first marriage, and ¢, that of her second marriage.
Assume that every woman bears a child according to an age independent fertility rate A. In this
case, the number of children born in the first marriage W, and in the second marriage W, are the
Poisson processes.

first marriage W, -~ Poisson (it;)
second marriage W, ~ Poisson (At,)

Let 8 be the relative length of the first marriage, 8=t,/ (¢;,-+t;). It is known that the
distribution of W, given the number of all children W= W, + W, becomes the binomial distribution
with W and & (Stone, 1989, p.298).

Pr(Wy=w|W=w, 0=6, I=1)=(y, ) 6" (1—-6)"™" (n

If 6is 1/2, namely a remarriage always equally divides her effective reproductive period, a nice
property appears. A randomly chosen ego has y half siblings in either of the following two cases.

(@) W;=y and the ego belongs to the second marriage.
(b) W,=w—y and the ego belongs to the first marriage.

Given W=w, §=1/2, and I= 1, summing the two probabilities above results another binomial
distribution.
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Pr(r=n=() (5 (1=2)+(,2,) (B (1-2
@& (1)

_ w! A Nw-1 w—y
oyl (w—y)! <2) w

"‘] .’ 1 w1
(w—1) ( )

Ty w—y—DI\2

This is a binomial distribution with W—1 and 1/2. Let us define X=X—1. Since W is the
number of all the children seen from a mother, X is the number of all the siblings (whole-siblings
and half-siblings) seen from an ego. The above result shows that the number of half-siblings Y
has the binomial distribution with X and 1/2.

In this case, it is relatively easy to get the mean and variance of half-siblings. The conditional
mean is £ (Y|X, I=1)=X/2. By the assumption of independence between marity and parity,
averaging this conditional mean over X gives £ (Y|I=1)=S"/2, where S" is the mean number of
siblings. By using the probability that a mother marries twice, py,=Pr (I=1), the mean number
of half-siblings in the whole population is given as follows :

(=22 (18)

The conditional variance is var (Y|X, I=1)=X/4, because the distribution of ¥ given X and
I=11is binomial with X and /2. To get the marginal variance with respect of X, it is sufficient
to know that var [E (Y|X, I=1)] is 0s?/4 and E [var (Y|X, I=1)] is S'/4, where 05’ is the
variance of siblings appeared in Table 2. Thus, var (Y |I=1) is 03?/4+ S*/4. In the same manner,
we can get the unconditioned variance for the whole population.

var (V) =% [02+ 8" (1+ (1 =) SD] (19)

The results are such nice when 8=1/2 is assumed, but it is a strong assumption that a woman
switches to the second marriage at the middle of her reproductive period.

Goldstein assumed the uniform distribution on the configuration of children among marriages
(1994, p.12). I will show that the Goldstein model appears when 8 distributes uniformly on (0,1).
The density of 6 is one if uniform distribution is assumed, and the joint distribution of W, and
6 is the same as (17). To obtain the marginal distribution W;, by integrating (17) over 6, the
following theorem on beta and gamma functions is helpful.

F(m+1)]‘(n+l)= min!
T'im+n+2) m+n+1)!

1
Jom(1—e)do=
0

Applying this formula, it becomes clear that W, (number of children born in the first marriage)
uniformly distributes on W (number of all the children).



1
Pr(W=w|W=wI=D= [ ()6 (1-6)*"*de
0
_(w )iﬂ].’(w—w,)!
w, (w+1)!

R
w+1

This time, instead of the binomial distribution with W— I and 1/2, the probability function of
half-siblings becomes as follows :

Pr(Y=y|W=w, I=D=2[-t=(1-2

)] =SR2 >, (20)

The formula above is actually a reduced form of Goldstein’s general formula (1994, p.12) when
marity is two. [ will continue seeking the mean and variance of half-siblings. When both the
experience of remarriage and the number of children are given, the conditional mean is,

v 2(W—y) W1

E(YIW, Izl)zyzgyW(W+l)_ 3

W >0.

By assumption of the independence between marity and parity, the average number of
half-siblings among those whose mother married twice is E(Y|/=1)=S8"/3. Then, the
unconditional mean for the whole population is,

s
E(v) =2 (21)

From the equation (20), the conditional variance given the mother’s remarriage and the number

of her children is, '

N Wl 2(W—y) _(W+2) (W-1)
var (YIW, I=1) yzo(y 3 )W(W+Z) e '

For those whose mother married twice, the variance is,

3052+ 3S"+S¢
18

var (Y|I=1)=
The unconditional variance for the total population is,
var (V) =24 (30324 35"+ (3—2pu) §7) (22)
4-2. Father's remarriage and half-siblings from different mother
Father’s remarriage causes much less problems than that of mother. Since it is assumed that
both wife and ex-wife of the father are first married, the number of half-siblings is that of all

children born to another wife of ego’s father. Since it is also assumed that parities of different
women are independently and identically distributed, the distribution of half-siblings is simply




that of children.

Let I be the indicator variable of father’s remarriage, pr=Pr (I=1) be the probability of
father’s remarriage, and Z be the number of half-siblings from different mother. Then, the
distribution of Z given that the father married twice is the distribution of children.

Pr(Z=z|I=1)=f (23)

This can also be seen as a simplification of the Goldstein model. When the marity of wife and
ex-wife is fixed to m, his formula for half-siblings through father is as follows (1994, p.11) :

0= ), bof
Here, p7 is the probability that z of her n children are born in the marriage with ego’s father.
_{n
.= <z)

However, under my simplifying assumption that m —1 for both wife and ex-wife, p,=1 if
z=n and 0 otherwise. Then, v,= £, if 2=n and 0 otherwise, which is equivalemt with the equation
(23).

Thus, conditional moments of half-siblings given that ego’s father married twice are simply
those of children. Namely, E (Z|I=1) is N" and var (Z|I=1) is 0;?. The unconditional mean for
the total population is,

J" (m _l)n—z
m

E(Z)=ppN". (24)

Knowing that var [E (Z|D]=p.(I1—pz) N'? and E [var (ZI)]=pro, the unconditional
variance is,

var (Z)=pr loif+ (1 —pr) N'2]. (25)

5. Conclusion

This article has discussed an analytical model of kinship frequencies. The frequency by kin
category is important because it determines the demographic condition of household size and
composition. Though household dynamics is more adequately studied through computer
simulations, the availability of kin as a demographic determinant can be modeled analytically.
The kin availability is also important as the source of economic and social supports. Although the
long term trend shows a decline in the importance of kin in everyday life, there still exist
exchanges of goods and services between parents and adult children even when they do not live
together,

The kinship models also have applications to demographic method. Many kin-based measures
of demographic indices have been invented. The mortality estimates with “children ever born,
children dead” method formalized by Brass (United Nations, 1990) and the estimate of growth

__26-__.



rate with the ratio of sisters by Goldman (1978) and its extension by Wachter (1980) and
McDaniel and Hammel (1980) belong to this class. It will be nice, however, if the reliability of
estimates can be asserted with probability theory especially when small sample data are used. In
this connection, the application of branching process to the methodological issue could be
interesting.
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Abstract

A Kinship Model Based on Branching Process
Toru Suzuki

The kinship model based on branching process developed by Pullum (1982) was examined and a
few minor extensions were attempted. The basic branching process can produce the distribution
of direct kin in one sex model of females. Pullum introduced the generating function of sisters so
that the model can give any moments for all kin categories.

Pullum also discussed the extension to two sexes with binomial distribution. He showed that
the two sex mean is always simply a multiple of the corresponding one sex mean. This article,
however, showed that such a simple relationship as Pullum suggested does not hold for the
variance.

In the Pullum model, the independence of sibling size between spouses was assumed and relatives
through a remarriage were not considered separately. For the former restriction, the moments in
perfect homogamy and in exclusion of mating between persons without sibling were derived and
compared with those in random marriage. It was shown that the variance of sibling sizeis greater
in homogamy than in random marriage. If the marriage between male and female who both have
no sibling is prohibited, the average sibling size reduces but the change in variance depends on the
shape of distribution.

As for remarriage, Goldstein (1994) gave the generating function for half-siblings. This article
showed that his model is based on the Poisson process in which the number of births by marriage
depends only on the length of marriage. In addition, specific formulae for the mean and the
variance were obtained by adding some stronger assumptions than those in the Goldstein model.
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